miércoles, 2 de mayo de 2012

Enlaces

Vídeos

El primer vídeo que contiene ejemplos del número áureo en la naturaleza, con música de Wim Mertens- Often a bird.

El segundo vídeo de un programa de la 1 que también habla sobre el número de oro.


Los dos vídeos los hemos visto en clase.

Definición del número de oro


El número áureo es el valor numérico de la proporción que guardan entre sí dos segmentos de recta a y b que cumplen la siguiente relación:
\frac{a+b}a=\frac ab
El segmento menor es b. El cociente a / b es el valor del número áureo: φ.
Surge al plantear el problema geométrico siguiente: partir un segmento en otros dos, de forma que, al dividir la longitud total entre el mayor, obtengamos el mismo resultado que al dividir la longitud del mayor entre la del menor.

Cálculo del valor del número áureo


Dos números a y b están en proporción áurea si se cumple:
\frac{a+b}a=\frac ab
Si al número menor (b) le asignamos el valor 1, la igualdad será:
\frac{a + 1}{a} = a
multiplicando ambos miembros por a, obtenemos:
 a + 1 = a^2 \;
reordenamos:
 a^2 - a - 1 = 0 \;
La solución positiva de la ecuación de segundo grado es:
 \frac{1+\sqrt{5}}{2}=1\textrm{'}6180339887\ldots
que es el valor del número áureo, equivalente a la relación a / b


\varphi = \frac{1 + \sqrt{5}}{2} \approx                 1,618033988749894848204586834365638117720309...
este es el número de oro con más números que arriba.

Propiedades algebraicas


  • Las potencias del número áureo pueden expresarse en función de una suma de potencias de grados inferiores del mismo número, establecida una verdadera sucesión recurrente de potencias.
El caso más simple es: \Phi^n = \Phi^{n-1}+\Phi^{n-2}\,, cualquiera sea n un número entero. Este caso es una sucesión recurrente de orden k = 2, pues se recurre a dos potencias anteriores.
Una ecuación recurrente de orden k tiene la forma a_1 u_{n+k-1}+a_2 u_{n+k-2}+...+a_k u_n\,, donde a_i\, es cualquier número real o complejo y k es un número natural menor o igual a n y mayor o igual a 1. En el caso anterior es \scriptstyle k=2\,\scriptstyle a_1 = 1\, y \scriptstyle a_2 = 1\,.
En resumen: cualquier potencia del número áureo puede ser considerada como el elemento de una sucesión recurrente de órdenes 2, 4, 6, 8,..., 2k; donde k es un número natural. En la fórmula recurrente es posible que aparezcan potencias negativas de \Phi\,, hecho totalmente correcto. Además, una potencia negativa de \Phi\, corresponde a una potencia positiva de su inverso, la sección áurea.

El número áureo en la Geometría


El número áureo y la sección áurea están presentes en todos los objetos geométricos regulares o semiregulares en los que haya simetría pentagonal, que sean pentágonos o que aparezca de alguna manera la raíz cuadrada de cinco.
  • Relaciones entre las partes del pentágono.
  • Relaciones entre las partes del pentágono estrellado, pentáculo o pentagrama.
  • Relaciones entre las partes del decágono.
  • Relaciones entre las partes del dodecaedro y del icosaedro.

Rectángulo áureo

 Un rectángulo cuyos lados están en una proporción igual a la razón áurea es llamado un rectángulo áureo. Este es un rectángulo muy especial como veremos. Los griegos lo consideraban de particular belleza y lo utilizaron asiduamente en su arquitectura. Al parecer a la mayoría de las personas también les parece más agradable a la vista un rectángulo con esas proporciones entre sus lados, inconscientemente se diseñan infinidad de cosas que resultan tener la forma de un rectángulo áureo: las hojas de papel tamaño carta miden 11 x 8 pulgadas, por ejemplo; esto nos da la proporción 1.37 que se parece a la razón aurea.
A partir de él podemos obtener una infinidad de nuevos rectángulos áureos. El proceso es iterativo y consiste en quitar a cada rectángulo áureo un cuadrado, la superficie que queda luego de hacer esto es un nuevo rectángulo áureo. 

En el pentagrama

El número áureo tiene un papel muy importante en los pentágonos regulares y en los pentagramas. Cada intersección de partes de un segmento interseca a otro segmento en una razón áurea.
Teniendo en cuenta la gran simetría de este símbolo, se observa que dentro del pentágono interior es posible dibujar una nueva estrella, con una recursividad hasta el infinito . Del mismo modo, es posible dibujar un pentágono por el exterior, que sería a su vez el pentágono interior de una estrella más grande. Al medir la longitud total de una de las cinco líneas del pentáculo interior, resulta igual a la longitud de cualquiera de los brazos de la estrella mayor, o sea Φ. Por lo tanto, el número de veces en que aparece el número áureo en el pentagrama es infinito al anidar infinitos pentagramas.

El teorema de Ptolomeo


Claudio Ptolomeo  desarrolló un teorema conocido como el teorema de Ptolomeo , el cual permite trazar un pentágono regular mediante regla y compás. Aplicando este teorema, se forma un cuadrilátero al quitar uno de los vértices del pentágono, Si las diagonales y la base mayor miden b, y los lados y la base menor miden a, resulta que b2 = a2 + ab.
Se puede calcular el número áureo usando el teorema de Ptolomeo en un pentágono regular.

 


El número áureo en la naturaleza

A lo largo de la historia, desde pensadores hasta matemáticos o teólogos han meditado sobre la misteriosa relación que se establece entre el número áureo y la naturaleza de la realidad. Esta curiosa relación matemática, conocida popularmente como la 
Proporción Divina o Áurea, fue definida por Euclides hace más de dos mil años a raíz de su papel crucial en la construcción del pentagrama, al cual se le atribuyen propiedades mágicas. 
Desde entonces, ha mostrado una propensión a aparecer en una variedad de lugares de lo más sorprendentes que veremos a continuación:

En esta imagen vemos representado la famosa espiral de Dudero (pintor renacentista) que se forma a partir del rectángulo áureo y que podemos encontrar en la formación de las conchas de muchos moluscos.

El número áureo en la arquitectura y el arte

Un ejemplo en la arquitectura se encuentra en la pirámide de Keops que data del 2600 a.C. Los egipcios levantaban sus tumbas, mastabas y pirámides sobre todo teniendo en cuenta las relaciones geométricas que se observan en volúmenes matemáticos.
Esta pirámide tiene cada una de sus caras formadas por dos medios triángulos áureos: la más aparente, aunque no la única, relación armónica identificable en el análisis de las proporciones de este monumento funerario en apariencia simple.

 
Un ejemplo del arte en un cuadro de Dalí llamado Leda Atómica
pintado en 1949; sintetiza siglos de tradición matemática y simbólica, especialmente pitagórica. Se trata de una filigrana basada en la proporción áurea, pero elaborada de tal forma que no es evidente para el espectador.
En el boceto  se advierte la meticulosidad del análisis geométrico realizado por Dalí basado en el pentagrama místico pitagórico.